On the Hochschild (co)homology of Quantum Exterior Algebras
نویسنده
چکیده
We compute the Hochschild cohomology and homology of the algebra Λ = k〈x, y〉/(x2, xy + qyx, y2) with coefficients in 1Λψ for every degree preserving k-algebra automorphism ψ : Λ → Λ. As a result we obtain several interesting examples of the homological behavior of Λ as a bimodule.
منابع مشابه
Hochschild (co)homology of exterior algebras
The minimal projective bimodule resolutions of the exterior algebras are explicitly constructed. They are applied to calculate the Hochschild (co)homology of the exterior algebras. Thus the cyclic homology of the exterior algebras can be calculated in case the underlying field is of characteristic zero. Moreover, the Hochschild cohomology rings of the exterior algebras are determined by generat...
متن کاملar X iv : m at h / 05 04 35 2 v 1 [ m at h . R A ] 1 8 A pr 2 00 5 Hochschild ( co ) homology of exterior algebras 1
The minimal projective bimodule resolutions of the exterior algebras are explicitly constructed. They are applied to calculate the Hochschild (co)homology of the exterior algebras. Thus the cyclic homology of the exterior algebras can be calculated in case the underlying field is of characteristic zero. Moreover, the Hochschild cohomology rings of the exterior algebras are determined by generat...
متن کاملHochschild Homology and Split Pairs
We study the Hochschild homology of algebras related via split pairs, and apply this to fibre products, trivial extensions, monomial algebras, graded-commutative algebras and quantum complete intersections. In particular, we compute lower bounds for the dimensions of both the Hochschild homology and cohomology groups of quantum complete intersections.
متن کاملON THE USE OF KULSHAMMER TYPE INVARIANTS IN REPRESENTATION THEORY
Since 2005 a new powerful invariant of an algebra has emerged using the earlier work of Horvath, Hethelyi, Kulshammer and Murray. The authors studied Morita invariance of a sequence of ideals of the center of a nite dimensional algebra over a eld of nite characteristic. It was shown that the sequence of ideals is actually a derived invariant, and most recently a slightly modied version o...
متن کاملOn algebraic structures of the Hochschild complex
We first review various known algebraic structures on the Hochschild (co)homology of a differential graded algebras under weak Poincaré duality hypothesis, such as CalabiYau algebras, derived Poincaré duality algebras and closed Frobenius algebras. This includes a BV-algebra structure on HH(A,A) or HH(A,A), which in the latter case is an extension of the natural Gerstenhaber structure on HH(A,A...
متن کامل